Identification of Wet-Spinning and Post-Spin Stretching Methods Amenable to Recombinant Spider Aciniform Silk.

نویسندگان

  • Nathan Weatherbee-Martin
  • Lingling Xu
  • Andre Hupe
  • Laurent Kreplak
  • Douglas S Fudge
  • Xiang-Qin Liu
  • Jan K Rainey
چکیده

Spider silks are outstanding biomaterials with mechanical properties that outperform synthetic materials. Of the six fibrillar spider silks, aciniform (or wrapping) silk is the toughest through a unique combination of strength and extensibility. In this study, a wet-spinning method for recombinant Argiope trifasciata aciniform spidroin (AcSp1) is introduced. Recombinant AcSp1 comprising three 200 amino acid repeat units was solubilized in a 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)/water mixture, forming a viscous α-helix-enriched spinning dope, and wet-spun into an ethanol/water coagulation bath allowing continuous fiber production. Post-spin stretching of the resulting wet-spun fibers in water significantly improved fiber strength, enriched β-sheet conformation without complete α-helix depletion, and enhanced birefringence. These methods allow reproducible aciniform silk fiber formation, albeit with lower extensibility than native silk, requiring conditions and methods distinct from those previously reported for other silk proteins. This provides an essential starting point for tailoring wet-spinning of aciniform silk to achieve desired properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip

Spiders achieve superior silk fibres by controlling the molecular assembly of silk proteins and the hierarchical structure of fibres. However, current wet-spinning process for recombinant spidroins oversimplifies the natural spinning process. Here, water-soluble recombinant spider dragline silk protein (with a low molecular weight of 47 kDa) was adopted to prepare aqueous spinning dope. Artific...

متن کامل

Stretching of supercontracted fibers: a link between spinning and the variability of spider silk.

The spinning of spider silk requires a combination of aqueous environment and stretching, and the aim of this work was to explore the role of stretching silk fibers in an aqueous environment and its effect on the tensile properties of spider silk. In particular, the sensitivity of the spider silk tensile behaviour to wet-stretching could be relevant in the search for a relationship between proc...

متن کامل

Spider wrapping silk fibre architecture arising from its modular soluble protein precursor

Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope tr...

متن کامل

Extended wet-spinning can modify spider silk properties.

Contrary to expectation, we demonstrate that spider dragline silk spun experimentally under water displays greater stiffness and higher resilience compared to silk spun "naturally" into air. We suggest that this consequence of extended wet-spinning is due to increased molecular orientation resulting from extension of the mobile phase.

متن کامل

Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family.

Araneoid spiders use specialized abdominal glands to produce up to seven different protein-based silks/glues that have diverse physical properties. The fibroin sequences that encode aciniform fibers (wrapping silk) and the mechanical properties of these fibers have not been characterized previously. To gain a better understanding of the molecular radiation of spider silk fibroin genes, cDNA lib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 17 8  شماره 

صفحات  -

تاریخ انتشار 2016